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As soon as the nonholonomic relations, discovered by Hertz [ 1 I, were 

introduced into mechanics, there arose the question whether the already 
existing theorems for holonomic systems could be extended to nonholo- 
nomic ones. First the question was raised (by Hertz 11 1 1 whether 
Hamilton’s principle was valid for nonholonomic systems. Hertz [l 1 ex- 

pressed doubt with respect to the validity of this principle for non- 

holonomic systems; Appell 13.2 1 asserted definitely that this principle 
need not hold for nonholonomic systems. If one examines the derivation 
of Hamilton’s principle, it becomes clear that the validity of Hamilton’s 
principle is based on the admissibility of transpositional relations 

d&r = 8dx, d8y = 8dy, 

for all coordinates of the system. 

d8z = 8ds 

Kirchhoff [4 I proved that these relations hold for holonomic systems, 
Appell [2 1 shows by an example that for a nonholonomic system the 
relations mentioned may fail to hold for all coordinates. Subsequently 
the question of the validity of these relations has had the attention of 
various scientists. Hamel [ 5 I, for example, considered it. Finally. in 
recent years, this topic has been treated in a number of works by Soviet 

scholars. 

1. Let a material system be given. Let ql, . . . , qk be generalized co- 
ordinates of the system. We suppose that the system is subiected to 

linear differential constraints of the type 
k-m 

(8=I,...,m) (1.1) 

with coefficients that are differentiable in some region A. 

The motion 

Qv = (Pv(Q (v=l,...,k) 0.2) 

682 
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of the material system is said to be kinematically ahissible if the 

functions q&t(t) satisfy identically the system of equations (1.11. 

The following theorem is true for a sufficiently small neighborhood 

of every point qlo, . . . . QkO’ to in the region A. 

Every kinematically admissible motion (1.2) of the given material 

system, which satisfies the condition q+,(t'l = q,‘(u = 1, . . . . k), can 
be given by a one-parameter family of kinematically admissible motions 

qv = @,,(r, a) (v=l,...,k) (1.3) 

where a is an arbitraryparametersuchthatthe functions @,,(t, =) satisfy 

the identities 

where k - m of these functions can be chosen arbitrarily extent for the 
conditions imposed by (1.4). 

Proof. Let us select twice-differentiable functions @*I, . ..) ‘k 
satisfying the conditions (1.41, but otherwise being arbitrary. We sub- 

stitute these functions in the equations of the system (1.1). That 

system can then be written in the form 

9' = fa(t, a, ql, . . .,qm) (9 = 1,. . . , m) (1.5) 

‘Ibe right-hand members of the equations of this system will be diffe- 
rentiable functions of all indicated variables. This system has only one 

solution qe = &(t, =)(O = 1, . . . . a), satisfying the conditions 

Q&O, a) = q$ (e = 1, . ..) m). 

‘Ihe system of functions 

(R(t, a),.. . , 0, (k 00, (%+I (h a), . . . , Q)K (t, a) (1.6) 

defines a one-parameter family of kinematically admissible motions of 

the system, We shall show that this family of motions satisfies the con- 

ditions (1.4). 

Indeed, from the fact that for q,+,= $,+, (t) (u = 1, . . . . k - m) 

the system (1.1) has a unique solution passing through the point ql', 
0 to, namely, qe = $(t)(f3 = 1, . . . . m), and 

6) e &_(t) (0 = 1, . . . , k - m), it follows 
, -- 

pe(tl(e = 1, . . . , ml. 

Thus, the system of functions (1.61 satisfies the 

identities (1.4). We now show that it also satisfies 

(1.41. 

from the fact-that 

that @,g(t, 0) = 

first of the 

the second identity 
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For this purpose we substitute the functions aI (t, a), . . . , Qm(t, a) 
in the equations of the system (1.5 ), and obtain 

m, 0, a) 
at rF,(t, a) ($=l,...,m) (l-7) 

‘Ihe functions Fe(t, a)(~9 = 1, 2, . . . . m), obviously, will be diffe- 

rentiable functions of t and a. Differentiating the members of the 

identity (1.7) with respect to Q, we obtain 

az@, U, a) W, (h a) 
aaat = aa (a=i,...,m) (l-8) 

(31 the other hand, one may write the system of identities (1.7) in 
the form 

1 

@a(& a)=\ FB(~, a)dt + q&O (a=i,.. .,m) 
i* 

Differentiating these expressions with respect to a, and performing 

the differentiation under the integral sign (whichispenaissibleowingto 

the fact that the functions Fe(t , a) (0 = 1, . . . , m) are assumed to have 

continuous derivatives of all orders with respect to a), and different- 

iating the result with respect to t, we finally obtain 

a2@8(h a) aF, 0, a) 
ataa E da 

(a= i,...,m) 

Gnnbining these identities with those given in (1.8), we obtain the 

second identity of (1.4). This establishes the lemna. 

ret an arbitrary kinematically admissible motion of a material system 

be given by the equations 

qy = $JV (t) (v = 1,. . . , k) (1.9) 

with the initial conditions q5,,(t” 1 = q,‘(v = 1, . . . , k). We include it 

in the one-parameter family 

qv = % (t, a) 

of kinematically admissible motions 

The system of quantities 

(v=i,...,k) (1.10) 

of a material system satisfying (1.7). 

is called the variation of the motion (1.9) subjected to inclusion with- 

in the family (1.10) of kinematically admissible motions of the system. 

The quantities 6q,, . . . , 69, are, obviously, differentiable functions 
of time. 
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We call attention to the fact that the quantities 6qm+1, Sq,+2’ _*., 

aqk may be chosen arbitrarily. 'Ibis is a simple consequence of the lemma. 

Next we prove the following theorem, 

If the variations of every kinematically admissible motion, subjected 
to inclusion in all possible families of kinematically admissible motions 
of the system, satisfy ail possible transpositional relations, then the 
system of equations of constraints (1.1) is completely integrable. 

Proof. In the nei~~orh~d of an arbitrary point qlof .*,t Q' to of 
the region A, we select an arbitrary kinematically admissible motion 

QV = $5 (t)(v *- 1, kl satisfying the conditions +,((t") = q,O(v = 1, 

. . . . kr. We includ;?'Chis motion in a one-parameter family 'I; = @V(tt a) 

fv = 1, l l l * k) of kinematically admissible motions satisfying the con- 
ditions (1.4f, w!lich can be done in consequence of the established learna. 

equalities and 

Here we !rave introduced the notation 

In this section the asterisk will indicate expressions in which the 
coordinates qr, .**, 
$,(t), 

qk are replaced by the corresponding functions 
. . . . CjkW. 

l!%y the hypotheses of the t!leorem, the quantities 6q,, ..+, Sqk must 
satisfy identically all transpositional relations. In other words, we 
have the identities 

k--m 
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Differentiating them with respect to time, we obtain 
k-m k-m 

f && + z ~;,m+o-g~ Q%n+o + 2 %m+tr $ ai,m+e = 0 (a=t,...,m) 
0==1 0-l 

let us subtract from the members of these equations the corresponding 

members of the equations (1.11) and obtain the system of equations 

k-m k-m 

2 &n+, $ $m.+a- 2 b,m+o-$ 'Pm+o - b =) 0 @=I,...,n) 
a=1 04 

Malcin~ use of the expression (1.1) and (1.12) we eliminate from the 

last displayed system of equations the velocities &I, l **, c, “II and the 

quantities SoI, . . . , 64,. These equations are thus reduced to the form 

These identities must hold for arbitrary 6~a+~, . . . , 69, under a given 

motion qv = $/w b = 1, . . . . k), and for arbitrary $‘n+l, +*r+2, . . . , 

flblk at the gzven point ql, . ..) QkO I to, The coefficients of ziqm+l, **., 

6qk and of #,+l, QIs+2, . . . , c$‘~ must, therefore, be zero in the above 

identities. tit since the point qlo, ,.,, qko* to was chosen arbitrarily 

in the region A, it follows that the following set of identities 

(a,T=i,...,k-mm) 

must hold in the entire region A. This means that the system of eqna- 

tions (1.1) is completely integrable, as was to be proven. 

Thus, in the case of nonholonomic systems, we cannot interpret all 

possibletr~s~siti~sof the system as variations of the motion of the 
system within the class of all kinematically admissible motions of the 

system. 

a. Let us suppose, as before, that a given material system is 

subjected to the differential constraints (1.1). 
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1. First, we make the following two hypotheses. 

In the neighborhood of an arbitrary point qIo, . . . . qk” of the region 

A, and at a fixed time to, it is possible to select (with a given amount 

of arbitrariness) a continuously differentiable field of velocities 

satisfying (1.1) at the given time. 

The field of velocities is given by the system of equations 

qv’ = $Y (4% * * * 9 QK) (v=l,. ..,k) 

k-m 

+a = - 2 a~~+oJI),to - da) (Q=I,...,m) 
a==1 

a@) 
e,m+e = ae*,+&“, Ql, * * - 9 QK), a/f) = a8 (to, q1, . . . , qk) 

(2.1) 

where the functions c,LS~+~, . . . , & are continuously differentiable in the 

indicated arguments but are otherwise arbitrary. 

l&t QY = ‘PV (Q (v=l,...,k) (2.2) 

be any kinematically admissible motion of a material system satisfying 

the conditions 

(pv (to) = QYO (v = 1, . . . . k,) (2.3) 

At any instant of time one can select a possible displacement of the 

system so that in the process of motion there is obtained some chain of 

oossible displacements. The second one of our initial hypotheses asserts 

the following: in the neighborhood of an arbitrary point qio, .a*, QkO’ 

to of the region A, it is possible to select, with a known degree of 

arbitrariness, a continuously differentiable (with respect to time) chain 

of possible displacements of the system. 

Teqorarily denoting the possible displacements of the system by 

the sequence rql, . . . , nqk, we may write the resulting chain of displace- 

ments as 

“Qv = % (4 (v= 1,. . . , k) 

k-m 

(t) where the functions v,,, 1 , . . . , qk ft) are 
but otherwise arbitrary. 

(9 = 1,. . . ) m) (2.4) 

. . * ‘Pk tt)) 

continuously differentiable 

2. We introduce an operation 6 which has the following properties: 
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(a) this operation is applicable only to functions of coordinates and 
time which are differentiable with respect to time; 

(b) the result of the application of this a-operation to the function 

f(t, Ql’ l .*, ok) at the point ql’, . . . . qkop to is written as 

k 

QJ 

where the partial derivatives are taken at the point qlo, . . . , qko, to, 
while the set of quantities Sq,, ,.., 6q, represents an arbitrary dis- 

placement of the system at the considered instant of time. 

3. Let us take an arbitrary point qlo, . . . , qko, to in the region A, 
and select within the neighborhood of this point at the fixed time to a 
continuously differentiable field of velocities. This field is determined 
by the formulas ( 2.1). Applying the operation 6 to the equations (2.1) 

(which are here considered as identities) we obtain the followina eoua- 
tions which hold at the point qlo, . ..) QkO’ ’ to * 

Introducing the notation 

and then dropping the subscript zero, since the point qlo, . . . , qko, to 

was an arbitrary point of the region A, we may write 

i5q,’ = i Q,.t,vGqv (p = 1, . . . , k) 
“=I 

k-m 

ac8.v =- c a8, m+oCcm+o. Y - 
0=1 w-1 

Eliminating the coefficient ag,, in these equations we finally obtain 

k-m 

am+a.&v - 
v-1 c3=m 

(2.5) 
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‘l’hus, the sequence Sq,, . . . . 6qk is completely determined if our 

hypotheses are satisfied, and if we are given the generalized velocities 

of the system, its possible displacements, and the coefficient matrix 
* 

am+1,1 ch+1.2 . . . am+0 

am+2,1 am+2.2. . . hftk 

I 

P-6) . . . . . . . . . . . . . . 

ak.1 ak,2 - - -ak.k 

4. In the neighborhood of an arbitrary point qlO, . . . . QkO t to of the 

region A, let us take a kinematically admissible motion (2.2) satisfying 

the conditions (2.3). Along the path of this motion we select a con- 

tinuously differentiable chain of possible displacements of the system. 

This chain is determined by the equations (2.4) in which, however, the 

terms rql, . . . . nqk have to be replaced by 6q,, . ..) 6q,. Differentiating 

the modified equations (2.4) and setting t = to in them, we obtain the 

following set of equations which must hold at the point qlo, . . . . 9k0, to 

-& 6q, = 
0 

(b8.m+t)0= pg=), + i; (ff2$yo (2) 
“Zl 

(v=i ,..., k, 8=1,..., m, 7=1,2 ,..., k-i) 

We should note that the following equalities hold: 
(2.8) 

(%+T)o = (%n+r)o (7 = 1, . . , , k-m) 
( ) 
$! o = (&‘)o (v = i, . . . , k), 

This means that the time derivative of the chain of possible dis- 

placements is determined at the point qlo, . ..) 9h0, to as soon as there 

are given the generalized velocities of the system at this point, the 

possible displacements, and the set of quantities 

(+J), ( (+q, . . . ,(;9, 
This last set of quantities can be represented in the form 

(T=l,...,k-mm) 

Izt us suppose, however, that only chains of possible displace- 

ments are taken into consideration for which the quantities (‘I’~+~)~, 

(rl ’ (‘I’~)* all vanish whenever the possible displacements 

(8q~$,‘,“.:. 1’ iiq,), vanish. he must then set (@,,+l)O = . l . = VI& = 0, 
which implies that 
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(%>, = i (~m+r.v)o (~~v)~ 
v=: 

(T = 1, . . . , k - m) (2.9) 

Because of the arbitrariness of the point qlo, . , . , qko, to, one may 

drop the subscript zero in the equations (2.7), (2.8), and (2.9). 

Eliminating the quantities nI’, . . . . n,’ from equation (2.7) and making 

use of (2.8) and (2.9) we can reduce (2.7) to the form 

“=1 

k-m k k-m 

& Qa= - 2 ae,m+r 2 pm+z.&v- 2 b,m+&m++ (2.10) 
2=1 %=I +=I 

b,rn+r= - 
Ng+, + i aa;qy+h q”# 

“=I 

y;~~~;~_,) 

Thus, the time derivative of the chain of possible displacements for 

a material system, which at the time to has the position qlo, . . . , qko, 
is determined as soon as there are given the generalized velocities of 

the system, its possible displacements, and the coefficient matrix 

p m+l,i pm+1,2 - - * pm+l.k 

p m+z.i bn+z.z - - - pm+tk (2.11) 
. . . . . . . . . . . . . 

p k. I pk,2 * * * pk.k 

5. Equating the quantities Sq,’ to the corresponding (with respect to 

subscript u) quantities dSq,,/dt for the same values of the defining 

parameters, we derive, by means of (2.5) and (2.1@), the following system: 

6qrn+: = f 8qm+z 

k-m k-m 

6qe’ - & age- 2 bt+n+&m+z- 2 q~+r8as,m+r - 8as (2.12) 
r-1 -1 

b 8.m+r= 
aa8sm+r 

at 

C~I this basis we conclude that the operations 6 and d( )/dt are comnuta- 

tive (transpositional) for the last k - m generalized coordinates; this 

transposition is valid at every point of the region A independently of 
the values of the generalized velocities q’,+l , , , . , qli and possible 

displacement. l’he situation in regard to analogous transpositional rela- 
tions for the remaining coordinates is described by the theorem. 

In order that the b-operation at a given point shall satisfy the 

transpositional relations 
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Qi+*= &Q,+r (i=I,...,m--x) (2.13) 

it is necessary and sufficient that the following equations hold at that 

point 

%+f. m+o 
at 

%.m-t7 = 0 

a=*+i - ap.m+o-- - - 
m aa,+,, *.+ 

aqm+a 2l 
p+ aQP 

up = 0 (2.14) 

@=I,..., k-m; r-i ,..., k-m; i=l,..., m-s) 

Proof of Necessity. Taking into consideration the relations (2.13) we 

obtain from (2.12) the equations 
k-m k-m 

c b,+r, m+uqm+oa- x q,,Jb+i, m+r - fh+i = 0 (0 = 1, . . . , k -4 
a=1 7-l 

b aas+f. m+a k a=,+, m+. 
r+i, m+a= at +z ai, 4”’ (i=_,...,m-s) (2.15) 

“=I 

6a 
By isolating within these equations the expression 6o,+i, .+r and 

s+i’ and by then eliminating the quantities ql, 
, 

. ..) (7,; Ql P l **, Q, 
, 

with the aid of the relations 
k-m k-m 

qa’ + z Q8.*+4&+, + a8 = 0, aq8 + c a8,m+&m++ = 0 (a= 1,. . . ,m) 

+=1 7=1 

we reduce the identities (2.15) to the form 

m aa,+r m+r +x ai =P.m-t-a = >I 
0 

0=1 0 

(i=l,...,m-s) 

These equations must hold for arbitrary 8q,+, and q’,,. ‘Ihe ex- 

pressions within the parentheses must therefore be equal to zero, that 
is 

aas+i, m+a 

at - i aa~+;;m+?zo - z* + ~l~up,_+~ = 0 &II 
0=1 0 0 

aa 

@=I,..., k-m; 7=1,..., k-m; i=I ,..., m-8) 
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which is exactly the equation (2.14). 

Proof of Sufficienc.y. Carrying out the presentation in the reverse 

order, we pass from equation (2.14) to the equations (2.15), whereby the 

latter equation will hold for arbitrary a~,,+~ , . . . , 6qk, q’,+l , . ..) 
q’k. Taking into account the equations (2.15) in connection with the 

identities (2.12), we can derive the relations (2.13). This concludes the 

proof. 

We obtained the equations (2.14) at a point. Ilowever, if we assume 

that the transposition of the operations 6 and d( )/dt is permissible at 

each point of some region, then the equations (2.4) must hold identically 

in this region. 

In accordance with the theorem just proven, all material systems which 

are subjected to constraints of the form (1.1) fall into m + 1 classes 

corresponding to the different realizable relations of the form 

fj. In conclusion we consider an example which illustrates the last 

theorem. We take the system 

de+ w-h = 0, dq, + q&s = 0, dqs + q,dq, = 0 (2.16) 

‘lhe integrals II of this system satisfy the following system of linear 

first order, 

Following 

first order, 

partial differential equations 

9za+i+9i&;;=o, 9s;; -g 

a well-known method of the integration 

partial differential equations, we can 

= 0 

of systems of linear, 

convince ourselves 

that this system of equations does not possess any solutions other than 

the constant one. This means that the system (2.16) does not possess an 

integrable combination. 

.& the other hand, the coefficients in the equations of the system 

(2.14) satisfy identically the equations (2.12) for k = 5, ts = 3, s = 2, 
i = 1. 

Therefore, the system (2.16) admits the transpositional relations 

d d 
dt 89s = 5 dt93, 
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