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As soon as the nonholonomic relations, discovered by Hertz [ 1], were
introduced into mechanics, there arose the question whether the already
existing theorems for holonomic systems could be extended to nonholo-
nomic ones. Pirst the question was raised (by Hertz {1 ] ) whether
Hamilton’s principle was valid for nonholonomic systems. Hertz [1] ex-
pressed doubt with respect to the validity of this principle for non-
holonomic systems; Appell [3,2 ] asserted definitely that this principle
need not hold for nonholonomic systems. If one examines the derivation

of Hamilton’s principle, it becomes clear that the validity of Hamilton's
principle is based on the admissibility of transpositional relations

ddx = 8dz, d3y = 3dy, d3dz = 8dz
for all coordinates of the system.

Kirchhoff [ 4 ] proved that these relations hold for holonomic systems,
Appell [2 ] shows by an example that for a nonholonomic system the
relations mentioned may fail to hold for all coordinates., Subsequently
the question of the validity of these relations has had the attention of
various scientists. Hamel [5 ], for example, considered it. Finally, in
recent years, this topic has been treated in a number of works by Soviet
scholars.,

1. Let a material system be given. Let Tus eeer Gy be generalized co-
ordinates of the system. We suppose that the system 1s subjected to

linear differential constraints of the type
k—m

qo’+ Za.'mﬁq;!+'+ao=0 9=1,...,m) (11)

=1
with coefficients that are differentiable in some region A.

The motion

gy = Py (f) v=1,...,k (1.2)
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Transpositional relations in mechanics 683

of the material system is said to be kinematically admissible if the
functions ¢b(t) satisfy identically the system of equations (1.1).

The following theorem is true for a sufficiently small neighborhood
of every point q1°, eevy 4%, t° in the region A.

Every kinematically admissible motion (1.2) of the given material
system, which satisfies the condition §,(t°) = q,°(v = 1, ..., k), can
be given by a one-parameter family of kinematically admissible motions

g =D, (¢, ) v=1,...,k (1.3)

where a is an arbitrary parameter such that the functions <I>V(t, =) satisfy
the 1dentities
PO, SO,
@, (¢, 0)=9.(2), 529t — 3ida (1.4)

where k& ~ m of these functions can be chosen arbitrarily except for the
conditions imposed by (1.4).

Proof. Let us select twice-differentiable functions ¢Z+1' ceey B
satisfying the conditions (1.4), but otherwise being arbitrary. We sub-
stitute these functions in the equations of the system (1.1). That
system can then be written in the form

g =fo(t, &, q1,. .., qm) (0=1,...,m) (1.5)

The right-hand members of the equations of this system will be diffe-
rentiable functions of all indicated variables. This system has only one
solution gg = ¢p(t, «){(@ =1, ..., m), satisfying the conditions
Qe(to, «) = qao 6 = 1, vee,y m).

The system of functions

Dy (t,a) s O (L, @), Oyt @), ..., Du(t, x) (1.6)

defines a one-parameter family of kinematically admissible motions of
the system. We shall show that this family of motions satisfies the con-
ditions (1.4),

Indeed, from the fact that for Tpio = ¢.+o_(t) o=1 ..., k=m)
the system (1.1) has a unique solution passing through the point qlo,
ceoy g%, t°, namely, gg = #g(t)(6 =1, ..., m), and from the fact that
¢.+a(t, 0) = ¢.*o(t) (=1, ..., k= m), it follows that Q@(t, 0) =

P9(¢)0 =1, ..., m).

Thus, the system of functions (1.6) satisfies the first of the

identities (1.4). We now show that it also satisfies the second identity
(1.4).
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For this purpose we substitute the functions dﬁ(t. a), ..., ¢%(t' a)
in the equations of the system (1.5), and obtain
oD, (¢, a
—°¢,(,—15Fs(t, @ (@=1...,m) (1.7
The functions Fb(t, a)@ =1, 2, ..., m), obviously, will be diffe-
rentiable functions of ¢ and a. Differentiating the members of the
identity (1.7) with respect to a, we obtain

0Dy (t,a)  3Fy (t,a)
z;)aat = oaa $=1...,m (1.8)

On the other hand, one may write the system of identities (1.7) in
the form

Q)s(t, G)E Fs(t,a)dt+q9° (=1,...,m)

P L

Differentiating these expressions with respect to a, and performing
the differentiation under the integral sign (which ispermissible owing to
the fact that the functions Fg(t, a)(@ = 1, ..., m) are assumed to have
continuous derivatives of all orders with respect to a), and different-
iating the result with respect to t, we finally obtain

PPy (t, @) OF,(t, )
dtda da

Combining these identities with those given in (1.8), we obtain the
second identity of (1.4). This establishes the lemma.

!

o=1,...,m)

I

1et an arbitrary kinematicaily admissible motion of a material system
be given by the equations

g=o() (v=1,...,k (1.9)

with the initial conditions ¢, (t°) = q,°v=1, ..., k). We include it
in the one-parameter family

gv=0v(t, @) (v=1,...,k (1.10)
of kinematically admissible motions of a material system satisfying (1.7),

The system of quantities

9, (¢, ) B
8qy=a[——aa~— aeo (V——-i,...,k)

is called the variation of the motion (1.9) subjected to inclusion with-
in the family (1.10) of kinematically admissible motions of the system.

The quantities 5q1, ..., 8g, are, obviously, differentiable functions
of time.
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We call attention to the fact that the quantities 8q.+1' 3q.+z‘ s
5{1# may be chosen arbitrarily. This is a simple consequence of the lemma.

Next we prove the following theorem.

If the variations of every kinematically admissible motion, subjected
to inclusion in all possible families of kinematically admissible motions
of the system, satisfy all possible transpositional relations, then the
system of equations of constraints (1.1} is completely integrable.

Proof. In the neighborhood of an arbitrary point ¢,°, ..., q§°¥ 19 of
the region A, we select an arbitrary kinematically admissible motion
a, = ¢, (v =1, ..., k) satisfying the conditions ¢}, (t°) = ¢ °(v = 1,
cees kg. We include this motion in a one-parameter family g, = Q;(t, a)
(v =1, ..., k) of kinematically admissible motions satisfying the con-
ditions (1.4), which can be done in consequence of the established lemma.
The equalities

F—m

. i 3 8]
i Pot D) @i 5 Pmiotas=0  (9=1,2,...,m)

o=1
where
@) = Gpmiolts O, a), ..., Dp(t, 2)
ag)= ap (1, O, (tp a), .. Qi (2, a))
must hold identically in ¢ and a. It follows from these equalities and
from {1.4) that

k-—-m Remtnt

d . N d v od
800+ D 85 oy Mmtet D g Pmtodlamist S2s =0 (9=1,....m)
g} g

(1.11)

Here we have introduced the notation

& Gymis = é (_af&ﬂi‘i }Q 3q, Sap— ﬁ} (jiqu 5, (8:: L, ...,m )

war] a8, e=1,...,kwm

In this section the asterisk will indicate expressions in which the
coordinates qy, ++-, 9, are replaced by the corresponding functions

S {t), wen, (e,

By the hypotheses of the theorem, the quantities 301, PN SQk must
satisfy identically all transpositional relations. In other words, we
have the identities

Fewmtth

8qs +- Z Oy i Omea =0 (8=1,...,m) (1.12)
o=}
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Differentiating them with respect to time, we obtain
k—m Ketrt

d 5\ d
Tﬂ-sqg-}- \ Oy ra g D Sgmpet D Mmpo— T lmie=0  O=1...,m)

Oml

let us subtract from the members of these equations the corresponding
members of the equations (1.1}1) and obtain the system of equations

km~m k—m

d . d
2 MmOy myo— 2 Mmio gy Ompe—316=0  @=1,...,m)
=1 a=1

Making use of the expression (1.1) and (1.12) we eliminate from the
last displayed system of equations the velocities ¢",, ..., ¢’ and the

quantities Bql, vees 8q'. These equations are thus reduced to the form
k—m

m
/ aa, + 88y e dag aa,,
2 89m+1[ s “'2 a, a«;: . ~ 5 + Z Gom-te Go— +
p=1 m+T pey
g da da da
N L & mtc .mit 8. m-ta
+ 3 O (o=~ D 0 —
u*—-—zl ™o\ Mo Ex Pmte o, %mx
o aa ¢
0\ 9,
+ 2 tpmte )] =0 9=t,...,m)
p=1 %

These identities must hold for arbitrary 5qu+l, vees qu under a given
motien g, = ¢, (t) W =1, ..., k), and for arbitrary &, ,, & 00 +co)
gz')'k at the given pomt Gys sees qk , t°. The coefficients of 5q.+1, cees

1t '+2, ces, & B must: therefore, be zero in the above

8q, and of ¢
identities. But since the point ¢.°, ..., qko' t° was chosen arbitrarily

in the region A, it follows that the following set of identities

aaa.m-i-ﬂ_i a aaﬂ.m-}r — aa& + g a a_ast_ 0
at &0 o, 0tz ;:1 P g,

m
639 mtr 3 {3‘38 m+T aﬁ& 4o da, 23 mto
Demis W, dmtt Gomipe—2T3e 0

aqm+a P%‘—‘l o.mto dqp aqm«)—r + 92“ pumts an

(GDT-‘:i,-"vk-‘m)

must hold in the entire region 4. This means that the system of equa-
tions (1.1) is completely integrable, as was to be proven.

Thus, in the case of nonholonomic systems, we cannot interpret all
possible transpositions of the system as variations of the motion of the

system within the class of all kinematically admissible motions of the
system.

3. let us suppose, as before, that a given material system 1is
subjected to the differential constraints (1.1).
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1. First, we make the following two hypotheses.

In the neighborhood of an arbitrary point q ceey qk of the region
A, and at a fixed time t®, it is possible to select (with a given amount
of arbitrariness) a continuously differentiable field of velocities
satisfying (1.1) at the given time.

The field of velocities 1s given by the system of equations

q,,'=qav(q1,...,qk) v=1,...,k

k—m
— 2D b, —ae®  (=1...,m) (2.1)
o=1

ag)m+¢ = as.m+c(t°’ Qi -+ -0 qr)s af = ay (t° g1, - - - » k)

where the functions ¢h+1’ .++, ¢, are continuously differentiable in the
indicated arguments but are otherwise arbitrary.

Let =0 ()  (=1,....k (2.2)

be any kinematically admissible motion of a material system satisfying
the conditions

v (t°) = ¢.° v="1,....k) (2.3)

At any instant of time one can select a possible displacement of the
system so that in the process of motion there is obtained some chain of
vossible displacements. The second one of our initial hypotheses asserts
the following: in the neighborhood of an arbitrary point q1 , eee, qk ,
t° of the region 4, it is possible to select, with a known degree of
arbitrariness, a continuously differentiable (with respect to time) chain
of possible displacements of the system.

Temporarily denoting the possible displacements of the system by
the sequence TGy, «+., 7q,, we may write the resulting chain of displace-
ments as

gy = 7 (1) w=1,...,%

k—m
e (t) = Zl 0,m+1 m TA(t) 9=1,...,m) (2.4)
a e = omie (L, 0 (0)s .., Pk (2))
where the functions n-+_{'), e, nk(') are continuously differentiable

but otherwise arbitrary.

2. We introduce an operation & which has the following properties:
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(a) this operation is applicable only to functions of coordinates and
time which are differentiable with respect to time;

(b) the result of the application of this S-operation to the function
f(t, Tis ooes qk) at the point q1°, vees qk°' t° is written as

</ of
| 8qv
V%l \aqv)o
where the partial derivatives are taken at the point qlo, ces, qko, t°,

while the set of quantities 8q1, cee, qu represents an arbitrary dis-
placement of the system at the considered instant of time.

3. Let us take an arbitrary point q1 y seey qk t° in the region 4,
and select within the neighborhood of this point at the fixed time t° a
continuously differentiable field of velocities. This field is determined
by the formulas (2.1). Applying the operation 8 to the equations (2.1)
(which are here considered as identities) we obtain the following equa-
tions which hold at the point q1°, ceey @0, t%:

k =1 k
, a‘p P'— LIRS |
w-Bm (500
k—m

(), = 3 tomian (22 — 3 (hms (2452), ~ (32,

aq,

Introducing the notation

a9,
o

(a qv)o ( u.\')o
and then dropping the subscript zero, since the point q1°, cees qko, t©°
was an arbitrary point of the region A, we may write

k
by’ = 2 ausdgy (w=1,....K)
v=1
k—m k—m da da
Q- 9, m-io 4
gy =— 2 a9 m4omio,v — 21 qm+o aq - aq
o1 =1 v Y

Eliminating the coefficient ag, in these equations we finally obtain

k—m k—m
, 9=1,...,
3gy’ = — 2 ap,m+o 2 %mt-0,v0Gy — 2 U yo008.m+o — S0 (6 =1.... ,Z‘_m)
o=1 v=1 o=m
(2.5)
k

3(1;,1+°= 2 “m-l—o,VSQV
v=1
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Thus, the sequence 8q1, v+, 8q, is completely determined if our
hypotheses are satisfied, and if we are given the generalized velocities
of the system, its possible displacements, and the coefficient matrix

Emt1,1 Emigze - - FmiLk

Emi2,1  Emi22- - Emiok

" e 3 e o s s 8 & & s & s

(2.6)

ak'l “k'g Y ak'k

4. In the neighborhood of an arbitrary point q1°, ooy q,°, t° of the
region A, let us take a kinematically admissible motion (2.2) satisfying
the conditions (2.3). Along the path of this motion we select a con-
tinuously differentiable chain of possible displacements of the system.
This chain is determined by the equations (2.4) in which, however, the
terms 7q,, ..., 7q, have to be replaced by 5q1, cen, 6”&' Differentiating
the modified equations (2.4) and setting ¢t = t° in them, we obtain the
following set of equations which must hold at the point q1°, ceey @0, t°

d 5 dy,
@ = ('E)o

k—m k—m
(%)o = — D (@m0 (dn;,;+f)o _ =2 (Mm4<)o (bo.m+<)o 2.7

T=]
k
da y 70a do
by ____( o.m+t) ( 8,m+—r) (__v)
( .m+1)0 ot . o+ él aq, A dt o
v=1,...,k 9=1,...,m, =1,2,...,k—m)

We should note that the following equalities hold: (2.8)

do, ,
(Mmtr)o = (8gm+r)o (t=1,..., k~—m) (71:--)0 =) (v=1,..,k),

This means that the time derivative of the chain of possible dis-
placements is determined at the point q1°, +eey q,°, t° as soon as there
are given the generalized velocities of the system at this point, the
possible displacements, and the set of quantities

(d"m +1> (d”m +2) (‘i’l’_‘\

dt /o' dt Jo' "°’\dt/y

This last set of quantities can be represented in the form
{0 4 x

k
\"dt )o = (Bmtx)o+ 2 (Brm-tv.v)o (89v)o (tr=1,...,k—m)

vi=1
Let us suppose, however, that only chains of possible displace-
ments are taken into consideration for which the quantities (", +2)0,
(”'-+z)o y eees (r]'k)0 all vanish whenever the possible displacements
(871)03 oo (8q,), vanish. One must then set (B, )y = ... = Byl = 0,
which implies that
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(dnm-H) 2 (Bmrv)o (3qu)o r=1,...,k—m) (2.9)

v=1

Because of the arbitrariness of the point ¢.°%, ..., ¢.°, t°, one may
drop the subscript zero in the equations (2.7), (2.8), and (2.9).
Eliminating the quantitiesn,”, ..., n_° from equation (2.7) and making
use of (2.8) and (2.9) we can reduce (3.7) to the form

k
d
= Sqmpe= D) Bmtrady
k—m = k—m
qu_ — Z as m+s 2, Bmtrvdgv— 2 be,m0qm4 < (2.10)
=1 X v==1 T=1
aa da =
bomie= ot 4 3 Temin g (0= feen )

v=1
Thus, the time derivative of the chain of possible displacements for
a material system, which at the time t° has the position q1°, cees 030,
is determined as soon as there are given the generalized velocities of
the system, its possible displacements, and the coefficient matrix
Bmtin  Bmire-. . Bmirx
pm+2.1 pm+2.2 LICR pm+2.k (2 11)

Bri  Bra .- -Bex

5. Equating the quantities b‘qv' to the corresponding (with respect to
subscript v) quantities d8qv/dt for the same values of the defining
parameters, we derive, by means of (2.5) and (2.10), the following system:

, d
8qm+1 =dr 8qm-{-“'

k—m k—m
890 — 3 898 2 bO.m+18Qm+1“" 2 9;,,_*_,5“0,111-{-1 — dag (212)
Tax] =]
k
_ aae.'m+-|,- a"e.m+x ’ 8= 1, ceny k
bs,mpr= at + v§1 dq, Iv (T =1,...,k— m)

On this basis we conclude that the operations & and d( }/dt are commuta-
tive (transpositional) for the last k — m generalized coordinates; this
transposition is valid at every point of the region A independently of
the values of the generalized velocities ¢’ il e 9’ and possible
displacement. The situation in regard to analogous transpositional rela-
tions for the remaining coordinates is described by the theorem.

In order that the S-operation at a given point shall satisfy the
transpositional relations



Transpositional relations in mechanics 691

P d
sq.+{ = a 8q:+i (i=1,...,m—yx) (2.13)

it is necessary and sufficient that the following equations hold at that
point

m m
98, i mio 9,15 mix Gompa— 02 it mir 2 98,44 mio Gpmis = 0
My byt dq, mte by 9q, .
9,1 mio o da, 4y da,,; 98s+i, mio
—etfombe 4 P ap— — 2 a, =0 (2.14)
ot §1 aq‘, 9., +a fonert 6qp
e=1,...,k~myv=14,...,6—m;i=1,...,m—3)

Proof of Necessity. Taking into consideration the relations (2.13) we
obtain from (2.12) the equations

k—m k—m
D bati, mi0Gmios— D Oy, ettt mpr— 0881 =0 @=1,...,k—m)
o=1 T=1
k
b o= Zetmte 4 3 Brttmings @19
sti, mbo= — 5 T—qv i=1,...,m—ys) .

v=]1

By isolating within these equations the expression 8a s+i? mir and
SaH_t, and by then eliminating the quantities Qys ooy Qg q1 v eeey Gy
with the aid of the relations

k—m k—m
. o \
3%’ + 2 a8, mt qpmy. + a8 =0, 8gs + }J g, miOmi-=0 (@®=1,...,m)
=1 T=1
we reduce the identities (2.15) to the form
k—m m
da, ;. da da,, ~ Oa,.
2 89m+o[( el m+° 2 s-t; m+° ay — ) et + 2‘ 6‘+ ao.m-l-o) +
o=1 qp qm+° p=1 qP
kam 07 a da
3gti, mto Cyti, mto 8-4-i, Mt
+ (Rettmte e bl i
e§1 Tme a9m+ 92—"’1 g, T Ty, +
oa
+ 2 .+1, mtz mﬂ)] =0
o=1
(l=1,...,m—s)
These equations must hold for arbitrary 8¢ and q° The ex-

n+0 n4r’
pressions within the parentheses must therefore be equal to zero, that

1s m m
%yti, mia 2 da, 4y, mie, dag; \ dag; Gpmie =0 @)
mte =
ot p=1 %, % to o=1 9%,
m
aaa-}-i. mto 4] aaa-{-i. m+ta aa8+l mtr + Z aas—-[-t m+1-a mia = 0
P -

a
aqm-{»—t < aqp pom—4-T=" dq mto =

6=1,....k—m; t=1,...,k—m; i=1,. ..,m——s)
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which is exactly the equation (2.14).

Proof of Sufficiency. Carrying out the presentation in the reverse
order, we pass from equation (2.14) to the equations (2.15), whereby the
latter equation will hold for arbitrary 8q, ., ..., 9q,, T ppr s oees
9°. Taking into account the equations (2.15) in connection with the
identities (2.12), we can derive the relations (2.13). This concludes the

proof.

We obtained the equations (2.14) at a point. llowever, if we assume
that the transposition of the operations & and d( )/dt is permissible at
each point of some region, then the equations (2.4) must hold identically
in this region.

In accordance with the theorem just proven, all material systems which
are subjected to constraints of the form (1.1) fall into m + 1 classes
corresponding to the different realizable relations of the form

d
Sar

6. In conclusion we consider an example which illustrates the last

theorem. We take the system

dq, + qudg, =0, dqs + gsdgs =0, dgs 4+ ¢:dq, =0 (2.16)
The integrals U of this system satisfy the following system of linear
first order, partial differential equations

w o aU_w o o _w g
92 oq, qlaQs g ~— ' q3392 0gqs

d
9—ard=0

Following a well-known method of the integration of systems of linear,
first order, partial differential equations, we can convince ourselves
that this system of equations does not possess any solutions other than
the constant one. This means that the system (2.16) does not possess an
integrable combination.

On the other hand, the coefficients in the equations of the system
(2.14) satisfy identically the equations (2.12) for k=5, m= 3, s = 2,
1= 1,

Therefore, the system (2.16) admits the transpositional relations

d . « d d o o d d . « d
A BTG I T gl g tB=0g s
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